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1 Question Wording

The survey data are from the European Election Study 2009 (EES 2011), where the question

regarding self-placement was phrased this way:

In political matters people talk of ‘the left’ and ‘the right’. What is your position?

Please indicate your views using any number on a scale from 0 to 10, where 0

means ‘left’ and 10 means ‘right’. Which number best describes your position?

Similar questions were asked regarding party positions, rotating the order of the parties across

respondents. Respondents were also asked to report their party preferences, expressed as

the probability of ever voting for a party:

We have a number of parties in [this country] each of which would like to get

your vote. How probable is it that you will ever vote for the following parties?

Please specify your views on a scale where 0 means ‘not at all probable’ and 10

means ‘very probable’.
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2 Additional Simulation Results

This section reports results for additional test criteria and scenarios. One of the new criteria

tests whether the models reveal the true extent of proximity voting: I first calculate the ab-

solute distances between stimuli and voters in both the true and the rescaled data. Then, for

each individual, I correlate these sets of distances with their preferences to obtain measures

of true and estimated proximity voting. Based on these measures, I report the average bias

and root mean squared error (RMSE) across all individuals for each dataset. For the ISR

model, I also check how well it estimates the γ-parameters by reporting the average bias and

RMSE across all individuals for each dataset.1

Figure S1 reports on the same analyses as in the article, but includes the additional

test criteria. The two upper panels are also shown in the article. The two lower panels

in the left column of the figure show whether the models succeed in estimating the extent

of genuine proximity voting. As we would expect, in the scenario with no rationalization,

all models yield unbiased estimates. However, as the degree of rationalization increases,

analyses based on AM-type models increasingly overestimate the extent of proximity voting.

This also results in higher RMSEs for these estimates, while the ISR model’s estimates have

more stable RMSEs. On these two test criteria, the differences between the BAM2 model

and the other AM-type models are modest. Finally, the two lower panels in the right column

of Figure S1 show the extent to which the ISR model succeeds at estimating the degree of

rationalization. The RMSEs are relatively low considering the scale, and the estimates are

essentially unbiased in all scenarios.

Figure S2 reports the same test criteria for data with larger errors (average standard

deviations around 1.5). The results generally show the same patterns as before, although

the BAM2 model now clearly outperforms the older AM-type models even in the absence

of rationalization: Its more informative priors make it considerably more robust to noise.

In terms of uncovering voter positions, the BAM2 model’s performance is closer to the ISR

model than the other AM-type models in these scenarios. However, the ISR model still

performs somewhat better (and shows more stable performance) also in this regard.

1Given the bounded nature of the γ-parameters, I use the posterior median to obtain point estimates,
except in the scenario with zero rationalization: As the true values here lie on boundary of the parameter
space, I estimate posterior modes, after reflecting the distributions at the bounds.
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Figure S1: Model performance in simulations with small errors.
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Figure S2: Model performance in simulations with large errors.
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3 Plots Including BAM2
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Figure S3: Correlations estimated voter positions in the UK including BAM2.
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Figure S4: Posterior predictive densities for the BAM and BAM2 models in the UK.
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4 Traceplots
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Figure S5: Traceplots of θ for the AM* model in the UK.
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Figure S6: Traceplots of θ for the BAM model in the UK.
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Figure S7: Traceplots of θ for the BAM2 model in the UK.
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Figure S8: Traceplots of θ for the ISR model in the UK.

11



5 Results for 14 Additional Countries

To show a more general picture of how the models perform in a variety of settings, this section

reports results for the AM*, BAM, BAM2, and ISR model in 14 additional countries.2 For

Bulgaria, a homoskedastic version of the ISR model is used to ensure efficient sampling and

convergence to the target distribution.3 As shown in column 5 of Table S1, the observed

sample mean placements are strongly correlated with the CHES expert placements in most

of these cases, which suggests that the models have a relatively easy task in recovering the

party positions.4 Indeed, all models tend to perform very well in this regard: The median

correlation is around .94 and .95 for each of them. These results are consistent with the

Monte Carlo simulations reported in this study, showing that the AM-type models generally

perform well in terms of recovering stimuli positions, even in the face of rationalization.

However, Table S2 further reports the Watanabe-Akaike information criterion (WAIC),

which suggests that the ISR model fits the data significantly better in nearly every single

case (Watanabe 2010).5 This suggests that a notable degree of rationalization is present in

all of these countries. To assess the extent of rationalization estimated by the ISR model,

column 4 of Table S1 reports the average of the γ-parameters for each country. This average

typically lies between .3 and .4, pointing to a significant degree of rationalization in all of

these countries. This is important, because the Monte Carlo simulations show that AM-type

models tend to give biased voter positions estimates under such circumstances.

To assess whether the models do indeed produce different voter position estimates, the

last three columns of Table S3 shows pairwise correlations between estimates from each of the

models. Interestingly, the AM* and BAM models tend to give somewhat different estimates,

having a median correlation of .87 between their estimates. This is worth noting, as the

choice between the two error specifications may be more consequential than users of these

models appreciate. As we would expect, the AM-type models also produce significantly

2Four countries were excluded by Lo, Proksch and Gschwend (2014) due to coding issues in the EES data,
and they are also excluded here: Belgium, Denmark, Sweden, and Spain. The following countries are also left
aside, because they have five or fewer party observations available to validate the party position estimates:
Czech Republic, Cyprus, Germany, Latvia, Luxembourg, Malta, Poland, and Portugal. At the individual
level, I require that respondents report a self-placement and use at least three unique party placements,
while I permit missing preferences and placements for up to one party.

3This case could possibly also be handled by running the chains longer, but I rather use this as an
opportunity to introduce a simplified version of the model, which may prove useful also in other applications.

4In their analysis of American data, Hare et al. (2015) report a correlation of 1.00 between BAM estimates
and mean placements.

5The exception is Bulgaria, where the BAM2 model has a slighly lower WAIC.
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Table S1: Summary of results for 14 countries.

Mean r, CHES

N J Rat. Means AM* BAM BAM2 ISR
Austria 694 8 0.38 0.99 0.98 0.98 0.99 0.99
Bulgaria 380 8 0.32 0.95 0.96 0.96 0.95 0.96
Estonia 502 6 0.33 0.93 0.85 0.86 0.92 0.94
Greece 824 6 0.35 0.98 0.99 0.99 0.99 0.99
Finland 865 8 0.27 0.97 0.97 0.98 0.98 0.98
France 767 8 0.42 0.92 0.94 0.95 0.94 0.94
Hungary 639 7 0.39 0.92 0.93 0.94 0.93 0.94
Ireland 779 6 0.46 0.97 0.91 0.94 0.97 0.97
Italy 586 8 0.33 0.99 0.99 0.99 0.99 0.99
Lithuania 358 10 0.29 0.63 0.56 0.58 0.61 0.58
Netherlands 813 11 0.34 0.98 0.97 0.97 0.98 0.98
Romania 355 7 0.48 0.47 0.58 0.67 0.55 0.69
Slovenia 718 9 0.29 0.88 0.87 0.87 0.88 0.88
Slovakia 618 8 0.29 0.83 0.79 0.81 0.78 0.81
Note: The columns under “r, CHES” report pairwise correlations between CHES
expert placements and the specified type of party position estimates. “Means”
refers to the sample mean party placements.

Table S2: Watanabe-Akaike information criterion (WAIC).

AM* BAM BAM2 ISR
Austria 24502.41 21792.20 21951.17 20799.05
Bulgaria 13659.74 13176.42 12404.62 12664.18
Estonia 13248.08 12564.42 12186.70 11581.17
Greece 28626.88 26545.65 25805.43 24423.98
Finland 25135.52 22762.58 22265.06 19890.13
France 22052.53 20431.67 19875.37 18529.24
Hungary 18929.11 18180.73 17761.42 16135.17
Ireland 23095.29 20946.38 21239.74 19403.62
Italy 19193.63 17291.58 17027.12 15606.85
Lithuania 15410.87 14958.38 14606.05 14022.69
Netherlands 37180.20 34313.68 34019.66 31939.56
Romania 13007.49 11726.98 12343.32 11196.51
Slovenia 22602.03 21253.85 20768.83 20116.30
Slovakia 29078.17 27403.38 26928.23 26037.77
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different estimates from the ISR model. The median correlation with the ISR estimates

are .76 for the AM* model, .73 for the BAM model, and .82 for the BAM2 model. This

illustrates once again that the models can give notably different results, and that the choice

of model can be important even when the stimuli position estimates are very similar and

appear highly valid (such as in Austria).

Table S3: Pairwise correlations of voter position estimates.

Model 1 AM* AM* BAM AM* BAM BAM2
Model 2 BAM BAM2 BAM2 ISR ISR ISR
Austria 0.65 0.79 0.78 0.73 0.53 0.75
Bulgaria 0.81 0.91 0.73 0.90 0.88 0.84
Estonia 0.73 0.72 0.76 0.66 0.66 0.89
Greece 0.96 0.88 0.90 0.87 0.89 0.92
Finland 0.82 0.74 0.90 0.77 0.74 0.74
France 0.96 0.93 0.91 0.83 0.82 0.83
Hungary 0.96 0.85 0.87 0.80 0.77 0.84
Ireland 0.84 0.76 0.66 0.67 0.58 0.81
Italy 0.95 0.78 0.84 0.73 0.71 0.78
Lithuania 0.93 0.79 0.77 0.61 0.63 0.78
Netherlands 0.90 0.88 0.90 0.78 0.83 0.85
Romania 0.59 0.57 0.54 0.56 0.49 0.74
Slovenia 0.77 0.87 0.86 0.74 0.69 0.80
Slovakia 0.92 0.86 0.83 0.84 0.83 0.94
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6 Model Codes

Stan Code for the AM* Model

data {

int<lower = 1> N; // n of individuals

int<lower = 1> J; // n of items

int<lower = 1, upper = J> L; // left pole

int<lower = 1, upper = J> R; // right pole

real Y[N, J]; // reported stimuli position

int<lower = 0, upper = 1> M[N, J]; // indicator of missing values

}

parameters {

real alpha[N]; // shift parameter

real beta[N]; // stretch parameter

real<lower = -1.1, upper = -.9> thetal; // left pole stimuli

real<lower = .9, upper = 1.1> thetar; // right pole stimuli

real thetam[J]; // remaining stimuli

real<lower = 0> tau; // homoskedastic precision

}

transformed parameters {

real theta[J]; // latent stimuli position

matrix[N, J] log_lik; // pointwise log-likelihood

real sigma = sqrt(1 / tau);

theta = thetam;

theta[L] = thetal;

theta[R] = thetar;

for (i in 1:N) {

for (j in 1:J) {

if (M[i, j] == 0) {

log_lik[i, j] = normal_lpdf(Y[i, j] | alpha[i] + beta[i] * theta[j], sigma);

}

else {log_lik[i, j] = 0;}

}

}

}

model {

alpha ~ uniform(-100, 100);

beta ~ uniform(-100, 100);

thetam ~ normal(0, 1);

thetal ~ normal(0, 1);

thetar ~ normal(0, 1);

tau ~ gamma(.1, .1);

target += sum(log_lik);

}
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Stan Code for the BAM Model

// Adapted from the JAGS code by Hare et al. (AJPS 2015).

data {

int<lower = 1> N; // n of individuals

int<lower = 1> J; // n of items

int<lower = 1, upper = J> L; // left pole

int<lower = 1, upper = J> R; // right pole

real Y[N, J]; // reported stimuli position

int<lower = 0, upper = 1> M[N, J]; // indicator of missing values

}

parameters {

real alpha[N]; // shift parameter

real beta[N]; // stretch parameter

real<lower = -1.1, upper = -.9> thetal; // left pole stimuli

real<lower = .9, upper = 1.1> thetar; // right pole stimuli

real thetam[J]; // remaining stimuli

real<lower = 0> nu; // hyperparameter

real<lower = 0> omega; // hyperparameter

vector<lower = 0>[N] tau; // individual precision

row_vector<lower = 0>[J] eta; // stimuli precision

}

transformed parameters {

real theta[J]; // latent stimuli position

matrix[N, J] log_lik; // pointwise log-likelihood

matrix[N, J] sigma;

theta = thetam;

theta[L] = thetal;

theta[R] = thetar;

sigma = sqrt(1 ./ (tau * eta) );

for (i in 1:N) {

for (j in 1:J) {

if (M[i, j] == 0) {

log_lik[i, j] = normal_lpdf(Y[i, j] | alpha[i] + beta[i] * theta[j], sigma[i, j]);}

else {log_lik[i, j] = 0;}

}

}

}

model {

alpha ~ uniform(-100, 100);

beta ~ uniform(-100, 100);

thetam ~ normal(0, 1);

thetal ~ normal(0, 1);

thetar ~ normal(0, 1);

nu ~ gamma(0.1, 0.1);

omega ~ gamma(0.1, 0.1);

tau ~ gamma(nu, omega);

eta ~ gamma(0.1, 0.1);

target += sum(log_lik);

}
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Stan Code for the BAM2 Model

data {

int<lower = 1> N; // n of individuals

int<lower = 1> J; // n of items

int<lower = 1> B; // scale bound

int<lower = -B, upper = B> Y[N, J]; // reported stimuli position

int<lower = 0, upper = 1> M[N, J]; // indicator of missing values

}

parameters {

vector[N] alpha_raw; // shift parameter, raw

real beta[N]; // stretch parameter

real theta[J]; // latent stimuli position

real<lower = 0> lambda; // sd of alpha

real<lower = 1> nu; // hyperparameter

real<lower = 0> tau; // hyperparameter

vector<lower = 0>[N] eta; // mean ind. variance x J^2

simplex[J] rho; // stimuli-shares of variance

}

transformed parameters {

vector[N] alpha; // shift parameter

matrix<lower = 0>[N, J] sigma; // sd’s of errors

matrix[N, J] log_lik; // pointwise log-likelihood

alpha = alpha_raw * lambda;

sigma = sqrt(eta) * to_row_vector(rho);

for (i in 1:N) {

for (j in 1:J) {

if (M[i, j] == 0) {

log_lik[i, j] = normal_lpdf(Y[i, j] | alpha[i] + beta[i] * theta[j], sigma[i, j]);

}

else {log_lik[i, j] = 0;}

}

}

}

model {

alpha_raw ~ normal(0, 1);

lambda ~ cauchy(0, B);

beta ~ normal(1, 1);

theta ~ normal(0, 10);

nu ~ cauchy(0, 50);

tau ~ cauchy(0, J * B);

eta ~ scaled_inv_chi_square(nu, tau);

rho ~ dirichlet(rep_vector(5, J));

target += sum(log_lik);

}
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Stan Code for the ISR Model

data {

int<lower = 1> N; // n of individuals

int<lower = 1> J; // n of items

int<lower = 1> B; // scale bound

int<lower = -B, upper = B> Y[N, J]; // reported stimuli position

int<lower = -B, upper = B> V[N]; // reported voter position

real<lower = 0, upper = 1> U[N, J]; // reported voter preference

int<lower = 0, upper = 1> M[N, J]; // indicator of missing values

}

transformed data {

real<lower = -B, upper = B> p1[N, J];

real<lower = -B, upper = B> p2[N, J];

real z;

z = (5.0 / (B * 1.0));

for (i in 1:N) {

for (j in 1:J) {

p1[i, j] = U[i, j] * V[i] + B * U[i, j] - B;

p2[i, j] = U[i, j] * V[i] - B * U[i, j] + B;

}

}

}

parameters {

vector[N] alpha_raw; // shift parameter, raw

real beta[N]; // stretch parameter

real theta[J]; // latent stimuli position

real<lower = 0> lambda; // sd of alpha

real<lower = 1> nu; // hyperparameter

real<lower = 0> tau; // hyperparameter

vector<lower = 0>[N] eta; // mean ind. variance x J^2

simplex[J] rho; // stimuli-shares of variance

real<lower = 0, upper = 1> gamma[N]; // rationalization

real<lower = 1> gam_a; // hyperparameter

real<lower = 1> gam_b; // hyperparameter

real<lower = 0, upper = 1> delta; // weight in mixing prop.

}

transformed parameters {

vector[N] alpha; // shift parameter

real mu0; // dif-adjusted mean

matrix<lower = 0>[N, J] sigma; // sd’s of errors

matrix[N, J] log_lik; // pointwise log-likelihood

alpha = alpha_raw * lambda;

sigma = sqrt(eta) * to_row_vector(rho);

for (i in 1:N) {

for (j in 1:J) {

if (M[i, j] == 0) {

mu0 = alpha[i] + beta[i] * theta[j];

log_lik[i, j] = log_mix( (.5 * (1 - delta)) + (delta * inv_logit(z * (V[i] - mu0))),

normal_lpdf(Y[i, j] | (1 - gamma[i]) * mu0 + gamma[i] * p1[i, j], sigma[i, j]),

normal_lpdf(Y[i, j] | (1 - gamma[i]) * mu0 + gamma[i] * p2[i, j], sigma[i, j]) );
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}

else {log_lik[i, j] = 0;}

}

}

}

model {

alpha_raw ~ normal(0, 1);

lambda ~ cauchy(0, B);

beta ~ normal(1, 1);

gamma ~ beta(gam_a, gam_b);

gam_a ~ gamma(1.5, .5);

gam_b ~ gamma(1.5, .5);

delta ~ beta(3, 1.1);

theta ~ normal(0, 10);

nu ~ cauchy(0, 50);

tau ~ cauchy(0, J * B);

eta ~ scaled_inv_chi_square(nu, tau);

rho ~ dirichlet(rep_vector(5, J));

target += sum(log_lik);

}
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